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Numerical investigation of laminar, transitional and chaotic flows in converging- 
diverging channels are performed by direct numerical simulations in the Reynolds 
number range 10 < Re < 850. The temporal flow evolution and the onset of turbulence 
are investigated by combining classical fluid dynamics representations with dynamical 
system flow characterizations. Modern dynamical system techniques such as time- 
delay reconstructions of pseudophase spaces, autocorrelation functions, fractal 
dimensions and Eulerian Lyapunov exponents are used for the dynamical flow 
characterization of laminar, transitional and chaotic flow regimes. As a consequence 
of these flow characterizations, it is verified that the transitional flow evolves through 
intermediate states of periodicity, two-frequency quasi-periodicity, frequency-locking 
periodicity, and multiple-frequency quasi-periodicity before reaching a non-periodic 
unpredictable behaviour corresponding to low-dimensional deterministic chaos. 

Qualitative and quantitative differences in Eulerian dynamical flow parameters are 
identified to determine the predictability of transitional flows and to characterize 
chaotic, weak turbulent flows in converging-diverging channels. Autocorrelation 
functions, pseudophase space representations and Poincare maps are used for the 
qualitative identification of chaotic flows, assertion of their unpredictable nature, and 
recognition of the topological structure of the attractors for different flow regimes. The 
predictability of transitional flows is determined by analysing the autocorrelation 
functions and by representing their attractors in the reconstructed pseudophase spaces. 
The transitional flow behaviour is examined by the geometric visualization of the 
evolution of the attractors and Poincare maps until the appearance of a strange 
attractor at the onset of chaos. Eulerian Lyapunov exponents and fractal dimensions 
are quantitative parameters to establish the onset of chaos, the persistence of chaotic 
flow behaviour, and the long-term persistent unpredictability of chaotic Eulerian flow 
regimes. Lastly, three-dimensional simulations for converging-diverging channel flow 
are performed to determine the effect of the spanwise direction on the route of 
transition to chaos. 

1. Introduction 
Chaos theory has been applied to improve the understanding and exploitation of 

fluid mixing (Ottino 1992) and has been combined with classical fluid mechanics, 
transport phenomenon and kinematics to produce a general framework to investigate 
practical device performance in biomedical applications and heat exchangers (Hattler 
et al. 1992; Guzman & Amon 1994a). The objective in these investigations is the 
enhancement of mass and heat transfer involving transport processes near non- 
homogeneous walls. Heat transfer enhancement due to fluid mixing exhibits different 
characteristics depending on the flow conditions. In a flow regime of poor mixing at 
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low Reynolds numbers, trajectories of neighbouring fluid particles remain close to each 
other, and the convective mixing process is said to be non-chaotic. Increases in 
Reynolds numbers can lead to mixing enhancement owing to stretching and folding of 
fluid particles in flow regimes of chaotic advection (Ottino et al. 1992). Lastly, high 
heat transfer rates are obtained in flow regimes of turbulent mixing. However, larger 
mechanical pumping power is often required to induce heat and mass transfer 
enhancement by convective mixing at a given flow rate (Amon & Mikic 1990). The 
question remains whether the advantage gained by increasing convective mixing is 
larger than the cost involved with the higher power input requirement. 

In this context, there are two main reasons for our interest in characterizing and 
exploiting chaos. First, the behaviour of a chaotic system is a collection of many 
orderly behaviours, none of which dominates under ordinary circumstances. However, 
a chaotic system can follow one of its many regular behaviours when it is perturbed 
properly. In addition, chaotic systems are unusually flexible because of their ability to 
rapidly switch among different behaviours. Secondly, although chaos is unpredictable, 
it is deterministic. Therefore, if two nearly identical chaotic systems of the appropriate 
type are driven by the same signal, they will produce the same output, even though we 
cannot say apriori what the output might be (Douglas 1992; Ditto & Pecora 1993; 
Shinbrot et al. 1993). Small changes in initial conditions can lead to large and 
unpredictable changes in the long-time evolution of the system. Therefore, no long- 
range behaviours can be anticipated. This also implies that computations of long-range 
behaviours can be seriously affected by small approximation errors. 

Even though we are far from a complete understanding of all possible scenarios to 
chaos, three scenarios that lead to non-trivial attractors have been investigated 
theoretically and verified experimentally. These scenarios are the Ruelle-Takens- 
Newhouse scenario through quasi-periodicity (Ruelle & Takens 197 l), the Feigenbaum 
scenario through period-doubling (Feigenbaum 1980), and the Manneville-Pomeau 
scenario through intermittency (Manneville & Pomeau 1980). 

In the Ruelle-Takens-Newhouse scenario, a system initially in steady state becomes 
dynamically unstable after changing its control parameter. As the motion grows and 
nonlinearities come into effect, the motion approaches a limit cycle through a Hopf 
bifurcation. As the control parameter is further varied, the system undergoes two or 
more Hopf bifurcations so that three simultaneously coupled limit cycles coexist, and 
chaotic motions then become possible. Thus, the precursor to such a chaotic state is a 
quasi-periodic multi-frequency state. 

The classical Taylor-Couette flow experiment of Gollub & Swinney (1975), using 
spectral analysis of laser Doppler velocimetry measurements, provided a remarkable 
verification of the Ruelle-Takens-Newhouse predictions. They observed a well-defined 
transition between a quasi-periodic two-frequency flow and a continuous frequency 
spectrum flow. Quasi-periodic Taylor-Couette flows with two and three independent 
frequencies as well as non-periodic flow behaviour corresponding to low-dimensional 
deterministic chaos were both observed experimentally (Gorman, Reith & Swinney 
1980; Brandstater & Swinney 1987) and predicted numerically (Vastano & Moser 
1991). Pfister, Buzug & Enge (1992) also identified different routes to chaos in 
Taylor-Couette flows and found a period-doubling cascade, a quasi-periodic three- 
frequency flow, and an intermittent scenario. 

Gollub & Benson (1980) identified four different routes to turbulence in 
Rayleigh-Benard convective flows depending on the geometric aspect ratio, Prandtl 
number, and mean flow conditions. They found broad-spectrum flows preceded in 
Rayleigh number by quasi-periodicity and phase locking, by quasi-periodic two- and 
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three-frequency flows, by a succession of subharmonic period-doubling bifurcations, 
and by intermittent noise. Walden et al. (1984) observed experimentally quasi-periodic 
flows in Rayleigh-Benard convection with four and five independent frequencies, 
whereas McLaughlin & Orszag ( 1982) found numerically periodic, quasi-periodic, and 
chaotic behaviour in their investigation on transitional thermal convection. Their 
results appear to be consistent with the Ruelle-Takens-Newhouse theory in that 
simulated flows with three or more distinct frequencies also contain broadband 
frequency components. 

Guzmin & Amon (1994a) demonstrated that a two-dimensional flow in a 
converging-diverging channel experiences a sequence of instabilities reaching a chaotic 
regime after three distinct supercritical Hopf bifurcations as the Reynolds number is 
increased. As a consequence of classical fluid dynamics flow characterizations, such as 
velocity histories and power spectra, we found that this converging-diverging channel 
flow bifurcates successively from a laminar steady state to an aperiodic regime, passing 
through intermediate states of periodicity with one fundamental frequency, two- 
frequency quasi-periodicity, frequency-locking periodicity, and three-frequency quasi- 
periodicity. When a system undergoes three Hopf bifurcations, starting from a 
stationary solution as its control parameter is varied (e.g. Reynolds number), then, it 
is likely that the system possesses a strange attractor with sensitivity to initial 
conditions after the third bifurcation (Ruelle 1980; Eckmann 1981). The power 
spectrum of such a system exhibits one, then two, and possibly three independent 
fundamental frequencies. As the third frequency is about to appear, some broadband 
components will appear simultaneously if there is a strange attractor. This succession 
can be interpreted as a chaotic evolution of the system governed by a strange attractor 
which culminates with a continuous frequency spectrum solution that emerges after a 
quasi-periodic flow, suggesting that the transition to turbulence follows the 
Ruelle-Takens-Newhouse (RNT) scenario (Eckmann 198 1 ; Guzmin & Amon 1994~).  

In this paper, we extend our previous investigations in converging-diverging 
channels by performing direct numerical simulations (DNS) to calculate dynamical 
system parameters, which provide strong evidence of the Ruelle-Takens-Newhouse 
route to chaos. We employ dynamical system techniques, such as time-delay 
reconstructions of pseudophase spaces, Poincare maps, autocorrelation functions, 
fractal dimensions, and Eulerian Lyapunov exponents to characterize laminar, 
transitional and chaotic flow regimes. In addition, we examine qualitative and 
quantitative differences in these dynamical system parameters to identify Reynolds 
number ranges of chaotic flow behaviour and to quantify the strength of chaotic 
regimes so that chaotic mixing can be conveniently exploited. 

This paper is organized as follows. In 52, we describe the physical problem, the 
mathematical model, and the numerical procedure. In 93, we present the numerical 
algorithms for evaluating dynamical system parameters, we analyse the Eulerian flow 
dynamical representation, and we describe the route to chaos using techniques derived 
from dynamical systems. In $4, we present Lagrangian trajectories on laminar and 
transitional flow regimes, and in $ 5 ,  we describe the effects of flow three-dimensionality. 
In $6, we discuss the relevance of the dynamical parameter characterization for 
investigating transition to turbulence and chaotic flow regimes, followed by a 
discussion of our current and future research. Lastly, conclusions are presented in $7.  
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2. Converging-diverging channel : physical problem, mathematical model 
and numerical approach 

The converging-diverging channel is a symmetric, wavy channel with sinusoidal 
walls (figure 1). It is a model for devices employed for enhancing heat and mass transfer 
efficiency in industrial transport processes and in biomedical applications such as blood 
membrane oxygenators and kidney dialysers. Numerical calculations and experimental 
studies have been performed in converging-diverging channels and global flow 
patterns have been reported for fully-developed steady flows and pulsating external 
flows (Sparrow & Prata 1983; Sobey 1985; Ralph 1986; Faghri & Asako 1987; 
Nishimura et al. 1990; Guzman & Amon 1993). These flows are characterized by a 
separation zone for low Reynolds numbers, and by a steady vortex regime for 
moderate Reynolds numbers with recirculation zones and mixing regions within the 
mainstream. As the Reynolds number increases, unsteady vortex motion develops 
leading to the onset of transitional flows. 

We reported the basic mechanisms of unsteady oscillatory motion in converging- 
diverging channels and obtained symmetric vortical structures for subcritical flow 
regimes and asymmetric, time-dependent, self-sustained oscillatory flows for 
supercritical regimes (Guzman & Amon 1994~).  We demonstrated that the vortex 
dynamics is synchronized with the travelling wave structure which corresponds to 
Tollmien-Schlichting (TS) waves. Furthermore, the instabilities responsible for 
inducing and sustaining supercritical oscillatory flows are TS instabilities, and the 
oscillatory flow frequency corresponds to the frequency associated with the least-stable 
TS channel mode. 

Heat transfer enhancement is achieved in self-sustained oscillatory flow regimes with 
minimum penalties associated with increases in viscous dissipation and pumping power 
(Amon & Mikic 1990; Greiner, Chen & Wirtz 1991). Such enhancement in heat 
transfer is related to the flow mixing that occurs in self-sustained oscillatory flows 
(Amon et al. 1992), while mixing is related to the stretching and folding of fluid 
elements, and stretching and folding constitute the fingerprint of chaos (Sobey 1985; 
Ottino et al. 1992). 

The flow in the converging-diverging channel, shown in figure 1, is periodically fully 
developed in the streamwise x-direction, homogeneous in the spanwise z-direction, and 
governed by the incompressible Navier-Stokes and continuity equations in the 
computational domain 52 defined by the periodicity length L. The non-dimensionalized 
lengths, L / h  = 9.33, H / h  = 6.66, and W/h = 53.33, are associated with the x-, y- and 
z-directions, respectively. The boundary conditions for the velocity are no slip at the 
sinusoidal walls, periodicity on aa, of the fully-developed flow in the x-direction, and 
no slip at the sidewalls of the channel. The Reynolds number is defined as Re = $Vh/v, 
where V is the time-mean cross-channel average velocity, h is the channel half-height, 
and v is the kinematic viscosity of the fluid. All variables are non-dimensionalized by 
the centreline velocity %V, the channel half-height h, and the convective time. 

To establish the adequacy of the periodic boundary conditions imposed, our 
numerical results were compared with experimental flow visualizations in the available 
Reynolds number range 5 < Re < 300 (Stephanoff, Sobey & Bellhouse 1980; Sobey 
1980, 1982; Nishimura et al. 1990) and with numerical predictions from a 
computational domain composed by different periodicity lengths (Guzman & Amon 
1994b). These comparisons are in good agreement for the range of Reynolds number 
explored, validating the computational domain utilized for the simulations reported in 
this paper. 



Dynamica1,firow characterization in converging-diuerging channels 29 

2h 

FIGURE 1 .  Converging-diverging channel geometry : non-dimensionalized periodicity length 
L/h  = 9.33, height H / h  = 6.66, and spanwise length W / h  = 53.33. Point coordinates = 
(x/h,y/h,z/h): P, = (4.67.3.33, -24.0); P, = (4.67,3.33,0.0); P! = (4.67,3.33,24.0). 

The Navier-Stokes and continuity equations with appropriate boundary conditions 
are solved numerically using the spectral element method with a three-step time- 
splitting scheme (Patera 1984; Amon 1993, 1995). This time-stepping procedure 
includes an explicit third-order forward-in-time Adams-Bashforth scheme for the 
nonlinear convective term, an implicit Euler-backward scheme for the pressure step, 
and an implicit Crank-Nicolson scheme for the viscous step. The time-step size 
through the Courant number condition, the enforcement of the incompressibility 
constraint, and the viscous corrections along with the boundary conditions are 
imposed at the nonlinear, pressure and viscous steps, respectively. In the spectral 
element spatial discretization, the domain is divided into macro-elements which are 
isoparametrically mapped from the physical space to the local coordinate system. The 
geometry, velocity and pressure in each macro-element are represented as a tensor 
product of high-order Lagrangian interpolants through Gauss-Lobatto-Chebyshev 
collocation points (Amon 1993). The nonlinear convective term is evaluated 
pseudospectrally whereas the pressure and viscous terms, which correspond to 
modified Helmholtz equations, are solved by a variational approach (Patera 1984). 
This non-diffusive numerical methodology is well-suited to investigate temporal 
transition in self-sustained oscillatory flows since high-frequency flow oscillations are 
not damped by artificial numerical viscosity. Moreover, since the predicted flows are 
the results of evolution calculations, they correspond to stable solutions that are 
physically realizable. 

For the three-dimensional simulations, the computational domain is discretized with 
10 layers of macro-elements in the spanwise z-direction with 125 nodes per macro- 
element (figure 2).  Each layer contains 32 macro-elements with the same (x,y)-plane 
discretization as the one used for the two-dimensional simulations. Figure 2 ( a )  shows 
the macro-elements in the discretized domain whereas figures 2 ( b )  and 2 ( c )  depict two- 
dimensional projections of the spectral element mesh. The dark lines correspond to the 
boundaries between spectral macro-elements and the light lines are the internal 
collocation mesh points. Computations were performed with different mesh resolutions 
to determine the adequacy of the spatial discretization to resolve all temporal and 
spatial scales of the different flow regimes investigated (Guzman & Amon 1 9 9 4 ~ ) .  

The numerical results are obtained by direct simulation of the time-dependent 
governing equations, integrating in time, starting with a predicted flow and increasing 
gradually the Reynolds number until a steady, time-periodic or transitional state is 
found. Increases in Reynolds numbers are made in relatively small steps, so that the 
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FIGURE 2.  Computational domain and typical spectral element mesh: (a) three-dimensional macro- 
element discretization. Two-dimensional mesh projection depicting internal nodes; (b) z-axis view; 
(c) y-axis view. 

dynamic flow evolution can be followed in detail. The initial conditions for subsequent 
simulations are those associated with the preceding lower Reynolds number. To 
investigate the possibility of hysteresis effects in transitional predictable flows, several 
cases were simulated using different initial conditions corresponding to flow fields at 
both lower and higher Reynolds numbers. For example, simulations were performed 
for Re = 400 using as initial conditions the flow fields corresponding to Re = 150, 300 
and 500. These simulations yielded the same time-asymptotic evolution of the flow 
pattern and the same oscillatory frequencies, which suggest that the solutions are 
independent on the initial conditions for Reynolds numbers up to 550. After initial 
transients in the time evolution disappear, simulations are performed for an integration 
time long enough to yield statistically stationary signals to within 0.5 %. This requires 
about lo5 timesteps for a Reynolds number of 750. 

For subcritical Reynolds numbers, Re < Re, M 130, the flow patterns are symmetric 
along the centreline of the converging-diverging channel, and no flow oscillations are 
present. These time-asymptotic states, resulting from transient flow evolutions, are 
characterized by separation zones and symmetric vortices. For supercritical Reynolds 
numbers, Re > Recr the flow field loses its symmetry, and self-sustained oscillatory 
flows are induced which evolve to states of periodicity, quasi-periodicity and 
aperiodicity through successive flow bifurcations. These flows become more complex 
with larger oscillatory amplitudes and smaller multi-frequencies as the Reynolds 
number is increased. 

We plot in figure 3 the periodically fully-developed streamlines predicted numerically 
for subcritical and supercritical Reynolds number flows. Figure 3 (a) shows symmetric 
streamlines obtained for Re = 10. There is no flow separation along the sinusoidal 
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FIGURE 3. Instantaneous streamlines for subcritical and supercritical Reynolds flow regimes : 
(a )  Re = 10; (b) Re = 20; ( c )  Re = 50; ( d )  Re = 150; (e )  Re = 400; ( f )  Re = 750. 

walls and no vortex formation in this flow regime which corroborates the experimental 
flows visualized by Nishimura ef al. (1990). Figure 3 (b )  depicts symmetric counter- 
rotating vortices located upstream in the furrows and close to the walls for Re = 20. 
These vortices become stronger, increasing in size and moving downstream for Re = 50 
as shown in figure 3(c). Further downstream motions of the vortices occur as the 
Reynolds number is increased. These flow patterns agree well with those previously 
obtained experimentally and numerically for steady-state conditions (Sobey 1980, 
1982; Nishimura 1990). As the flow bifurcates to a self-sustained oscillatory flow, the 
vortex dynamics depicts an asymmetric motion of the vortices in the furrows and an 
increasing-decreasing-bulging-ejection vortical sequence for higher Reynolds numbers. 
Figure 3(d) shows instantaneous streamlines for Re = 150. In this two-vortex flow 
regime, the recirculating regions are moving alternately in the upper and lower furrows 
shifting their positions and strengths; however, the vortices remain confined in the 
furrows. At higher Reynolds numbers, the level of asymmetry and complexity of the 
flow structure increases as a consequence of a second flow bifurcation to a quasi- 
periodic regime (Guzman & Amon 1994a). A new flow regime is established and 
depicted in figure 3 (e) by instantaneous streamlines at Re = 400. The viscous forces are 
not strong enough to keep the vortices confined in the sinusoidal furrows and the 



32 A .  M .  Guzmun and C. H .  Amon 

vortices are alternatively ejected. The vortex dynamics is synchronized with the wavy 
character of the flow which is induced by the travelling waves and by the forces caused 
by the pressure field (Amon & Mikic 1990). These forces drive the flow up and down 
in the furrows as the wavy flow convects downstream. For example, as the crest of the 
wave passes through the furrows, its relatively high-pressure region, indicated with + 
in figure 3 (e), pushes fluid into the upper furrow while its relatively low-pressure region 
induces the vortex bulging from the lower furrow. 

As the Reynolds number is increased further, the flow becomes aperiodic. The 
instantaneous streamlines for Re = 750, shown in figure 3 ( f ) ,  depict the complexity of 
the flow structure and vortex interactions. The travelling wave structure and overall 
flow patterns remain; however, this flow presents smaller scale and stronger vortices 
than the preceding Reynolds number flows. Clockwise and counter-clockwise rotating 
vortices with different strengths co-exist in the same furrow, inducing stronger mixing 
between the bulk flow and the fluid in the furrows. On the basis of classical flow 
analyses, this aperiodic flow could be either chaotic or quasi-periodic with 
incommensurate fundamental frequencies and their harmonics. Therefore, our 
objective in this work is to combine DNS time-dependent flow solutions with nonlinear 
dynamical system techniques to characterize further these transitional flow regimes, to 
establish the evolutive pattern for the origin of chaos, to quantify chaotic flow regimes, 
and to provide evidence of the Ruelle-Takens-Newhouse (RTN) route for transition 
to turbulence in converging-diverging channel flows. 

3. Dynamical characterization of transitional and chaotic Eulerian flow 
regimes 

In this section, we present the dynamical characterization of Eulerian flows in 
converging-diverging channels in terms of autocorrelation functions, pseudophase 
space representations, Poincark sections, Eulerian Lyapunov exponents, and fractal 
dimensions for periodic, quasi-periodic and chaotic flow regimes. The autocorrelation 
functions, pseudophase space representations, and PoincarC techniques are qualitative 
tools that allow us to assert the unpredictable nature of chaotic flows and, at the same 
time, to recognize the topology of the attractor for different flow regimes. The Eulerian 
Lyapunov exponents and fractal dimension techniques are quantitative tools to 
establish the onset of chaos, the persistence of chaotic flow regimes, and the long-term 
persistent unpredictability of chaotic flows. 

3.1. Autocorrelation functions 
The autocorrelation function, A( T) ,  is a useful measure of the predictability of the fluid 
motion. For a periodic signal, A(T)  is a periodic function, whereas, for a chaotic signal, 
A( 2") tends to zero for some T > T,, where T, is a measure of the time during which the 
motion can be predicted in the future. A(T)  is defined as 

A(T)  = ___ fi x(t) x(t + T )  dt, 
(t ,  - tl)  

where T is a delay time between t ,  and t,. 
Figure 4 shows the autocorrelation functions obtained from the temporal evolution 

of the streamwise U-velocity component for various Reynolds numbers at a typical 
point located at the channel centreline. We performed extensive simulations for long 
enough times to evaluate the autocorrelation function A ( T )  as T goes to infinity, and 
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we plot A ( T )  corresponding to the last T = 500 units of non-dimensional time. Figure 
4 ( a )  depicts a periodic autocorrelation function generated by the temporal periodic 
flow evolution at Re  = 1 SO. A similar periodic autocorrelation function is obtained at 
R e  = 400 corresponding to the frequency-locking flow regime (figure 46), whereas for 
higher Reynolds numbers, the autocorrelation function tends to zero for sufficiently 
long times. This implies the existence of a chaotic flow regime and an unpredictable 
flow behaviour as illustrated in figure 4(c) for R e  = 850. 

The frequency-locking phenomenon, also called quasi-periodicity in mode-locking, 
plays a crucial role in the chosen route to chaos. Depending on the extent of change 
in the first fundamental frequency, wl, it has been found that the mode-locking regime 
may become locked in another frequency ratio (Berge, Pomeau & Vidal 1986; Moon 
1992), or the motion may suddenly become chaotic as the control parameter increases 
(Gollub & Benson 1980; Vittori & Blondeaux 1993). In converging-diverging channel 
flows, we have found that the frequency-locking regime at Re=400 reaches an 
asymptotic plateau and, then, evolves to a quasi-periodic regime. As the Reynolds 
number is increased beyond the first flow bifurcation, a self-sustained oscillatory flow 



34 A .  M .  Guzman and C. H.  Amon 
l ~ ' I ' ' " l " ' " ' ' ~ '  
I 

0.80 - 

N 2 0.75 1 
$ 
0 
.i 2 0.70 - 

0.65 - 

200 400 600 800 
Reynolds number 

FIGURE 5. Ratio of fundamental frequencies o l / w z  as a function of the Reynolds number. 

of fundamental frequency w1 sets in. At higher Reynolds numbers, another flow 
instability occurs leading to a second supercritical Hopf bifurcation. A second 
fundamental frequency w2 appears, and the flow regime becomes quasi-periodic with 
two fundamental frequencies w1 and w2 and their linear combinations (Guzman & 
Amon 1994~).  

We investigate the evolution of the fundamental frequency ratio, w1/w2, plotted in 
figure 5 as a function of the Reynolds number. The w1/w2 ratio is, in general, an 
irrational number, implying that both frequencies are incommensurate and the signal 
is aperiodic. This ratio decreases as the Reynolds number is increased until reaching 
asymptotically a plateau that coincides with the appearance of the frequency-locking 
phenomenon at Re z 400. Frequency-locking phenomena have also been reported in 
Rayleigh-Benard convective flows (Gollub & Benson 1980) and, recently, in two- 
dimensional oscillatory flows around a circular cylinder (Vittori & Blondeaux 1993). In 
these flows, further increases in the Reynolds number lead to chaotic flow regimes, 
whereas in the converging-diverging channel flow, a third supercritical Hopf 
bifurcation occurs for a Reynolds number of about 500 (Guzman & Amon 1994~).  
This leads to a quasi-periodic attractor with three fundamental frequencies wl ,  wqr and 
w, and their linear combinations. 

3.2. Pseudophase space representations 
The pseudophase space representation technique is based on time-delay recon- 
structions and allows the reconstitution of full-phase space behaviour from observable 
scalar time series (Packard et al. 1980; Takens 1981). For a scalar time series z(tk) of 
an observable z(t), where k E K,  K := ( k  E N,,; k < Mdat}  and M,,, is the number of data 
points, state vectors in the reconstructed n-dimensional phase space are given by 

F(tJ = (z(t,), z(t, + 71, z(t, + 271, . . . , z( t ,  + (n  - 1) 711, 

where SE S, t,7 = s $ ~ ,  SE {N,,;  s < Mdat - (n - 1) 7/$,}, $a is the sampling time of the 
continuous signal, 7 is the time delay which is a multiple of 4,. and n is the embedding 
dimension. If the attractor of the system in the original full space is m dimensional, 
then the n-dimensional reconstructed attractor in the pseudophase space will have the 
same invariant properties, such as fractal dimensions and Lyapunov exponents, for all 
n over a minimum value that is not greater than 2m+ 1 (Takens 1981). The choice of 
a proper time delay, 7, and a sufficiently large embedding dimension, n, which are not 



Dynamical ,flow charucterization in conoerging-diterging channels 35 

z(t + T) 

FIGURE 6. Three-dimensional pseudophase space representations based on time-delay reconstructions 
of the U-velocity at point (x /h ,  y /h ,  z /h )  = (4.67,3.33,0.0): (a) Re = 150; (h) Re = 250; (c) Re = 400; 
(d)  Re = 850. 

known a priori, is not trivial for time series. Given a time series with an infinite number 
of discrete data points, without noise and without restrictions in resolution, the time 
delay can be chosen almost arbitrarily. However, in practice, we increase the 
reconstruction dimension until the invariant properties do not change. 

The reconstructed attractors in the three-dimensional pseudophase space are shown 
in figure 6 for different flow regimes at ( x / h ,  y / h ,  z / h )  = (4.67,3.33,0.0). In this figure, 
z(t) ,  z(t  + 7), and z(t + 27) represent the components of the state vector obtained from 
the streamwise U-velocity at a characteristic point in the converging-diverging channel 
centreline. The time delay 7 for all the reconstructions presented here is twice the 
sampling non-dimensional time = 0.023445. The number of data points is 
Mdat = 10001 for all Reynolds numbers but RP = 850 for which Mdat = 35001. 
Figures 6(a) and 6(b)  show the fundamental limit cycle representing the periodic flow 
behaviour for Re = 150 and the quasi-periodic flow obtained for Re = 250, 
respectively. The flow at Re = 150, represented by a single loop in the three- 
dimensional pseudophase space, has evolved from a steady state to a limit cycle or 
periodic attractor through a first Hopf bifurcation. The orbits of the quasi-periodic flow 
with incommensurate fundamental frequencies at Re = 250 lie on the surface of a T’ 
torus. The deformed shape of this torus is due to the existence of many harmonics of the 
two fundamental frequencies (Guzmin & Amon 1994~).  Figure 6(c) shows the 
frequency-locking flow phenomenon that occurs for Re = 400 as suggested by the 
plateau depicted in figure 5 .  The orbits of this flow, located on the surface of a T 2  torus, 
form a closed loop which verifies the locking of the two fundamental frequencies in the 
ratio q / w 2  = 2/3. 

As the Reynolds number is increased further (e.g. Re = 500), the quasi-periodic T 2  
torus evolves to a T 3  torus. Figure 6 ( d )  shows the reconstructed attractor for Re = 850 
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where the preceding T 3  torus at Re = 500 has been broken up into a strange attractor. 
Even though these orbits seem to follow random trajectories, they represent a 
deterministic chaotic behaviour. 

3.3. Poincuri sections 
The Poincare section technique enables a systematic reduction in the representation of 
the system complexity by means of converting a continuous-time evolution into a 
discrete-time mapping and, consequently, reducing the problem dimensionality. Thus, 
trajectories with complicated appearance in a three-dimensional phase space could be 
depicted as trajectories inscribed on a T 2  torus. Although the attractor obtained in the 
new phase space is not identical to the original one, the new attractor's representation 
by a Poincare section does retain the same topological properties as the flow from 
which it originates (Berg6 er a/. 1986). 

To construct the Poincare sections, we follow the method proposed by Berge et al. 
(1986) of stroboscoping a time signal to determine the points in the Poincare section. 
This approach enables us to use the evolution trajectories on the phase space obtained 
from direct numerical simulations of the Navier-Stokes equations instead of data from 
evolution equations. We first construct a state vector F(t,) = {u(t,), u(t, + T)} based on 
the time delay reconstruction, where t ,  and 7 are associated to the sampling and delay 
times, respectively, as outlined in $3.2. Then, we obtain a trajectory of the continuous- 
time evolution within the pseudophase space, defined by the state vector and the 
sampling time such that each point of the trajectory is given by {u(t,), u(t ,  + T ) ,  t,}. The 
Poincare section is determined by the successive intersection points between this 
trajectory in the pseudophase space and a plane perpendicular to the time axis at 
intervals of time T,, where = 27c/w, is the period associated with the first 
fundamental frequency o1 of either the periodic or quasi-periodic flow and it is the time 
interval necessary to complete one cycle on the attractor. We perform long enough 
computational simulations to obtain the many points required for accurate Poincare 
map representations. 

Figures 7 and 8 depict the Poincare sections corresponding to continuous-time 
evolutions at two typical points in the computational domain for the Reynolds number 
range from 150 to 850. Poincark sections with well-organized structures are obtained 
for Reynolds number flows up to 450. For the time periodic flow at Re = 150 and the 
frequency-locking flow at Re = 400, the Poincare sections are composed by a discrete 
set of intersection points tracing a closed orbit. A blow up of particular regions shows 
more clearly that seemingly continuous sets of points are in fact discretely distributed 
on the closed orbit within the PoincarC section. The time signal for Re = 400 contains 
two commensurate fundamental frequencies o1 and w 2  whose ratio W J W ,  is a rational 
number (Guzrnlin & Amon 1994a). Therefore, the Poincare section is composed of a 
finite number of points which correspond to interceptions at same locations in the 
Poincare section. 

For quasi-periodic flow regimes, e.g. Re = 200 and Re = 250, the ratio of the 
fundamental frequencies w1/w2 is an irrational number and, therefore, the trajectory of 
points within the pseudophase space intercepts the Poincare section at different 
locations as depicted in figures 7 and 8. Because of the many subharmonics, 
superharmonics and linear combinations of the two fundamental frequencies of these 
quasi-periodic flows (Guzmin & Amon 1994a), trajectories within the pseudophase 
space densely cover the surface of the deformed T' torus shown in figure 6(b). Thus, 
the successive intersections of these trajectories form a Poincare section with a dense 
cloud of points that partially fill the bounded cross-sectional area of the deformed 
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torus, becoming more crowded as longer time trajectories are considered. In the limit 
of very large simulation times, an infinite number of intersection points in the PoincarC 
section will fill this bounded region. For higher-Reynolds-number flows, Poincare 
sections are composed by a non-structured and diffuse sequence of interception points 
such as for Re = 500 which is a flow regime with a T 3  torus attractor and for Re = 850 
which corresponds to an aperiodic flow regime represented by a broadband Fourier 
power spectrum (Guzman & Amon 1994n). 

A quantitative measure of the onset of chaos and the long-term persistent 
unpredictable nature of chaotic flow regimes is presented next from estimates of 
Eulerian Lyapunov exponents and fractal dimensions. 
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3.4. Eulerian Lyapunov exponents 
The Eulerian Lyapunov exponents spectrum, {A,}, is the most complete possible 
characterization of the geometric properties of an attractor and its dynamical flow 
properties for dynamical features such as fractal dimension and entropy can be 
calculated from {A,}. The Eulerian Lyapunov exponent measures the long-time 
average exponential growth or decay of infinitesimal perturbations to a phase space 
trajectory, i.e. it measures the sensitivity of the system to initial conditions in the phase 
space. Different algorithms have been proposed and developed to calculate Eulerian 
Lyapunov exponents (Wolf et al. 1985; Eckmann et al. 1986; Briggs 1990; Vastano & 
Moser 1991 ; Keefe, Moin & Kim 1992; Barna & Tsuda 1993 ; Rosenstein, Collins & 
De Luca 1993). An attractor in an N-dimensional phase space has N Eulerian 
Lyapunov exponents. Researchers have demonstrated that, in certain flow regimes, the 
Navier-Stokes equations can be represented by a low-dimensional attractor whose 
dimension increases with the Reynolds number (Brandstater & Swinney 1987 ; Vastano 
& Moser 1991 ; Pulliam & Vastano 1993). While the attractor may be low dimensional 
in the chaotic regime near the threshold of turbulence, in regimes of developed 
turbulence, its dimension soon becomes very large (Gaspard & Wang 1993). If an 
attractor has one or more positive Eulerian Lyapunov exponents, A,, perturbations on 
the attractor can grow exponentially fast in the directions of the positive exponents. In 
such a case, the attractor is said to be chaotic and is called a strange attractor (Berg6 
et al. 1986). A negative A, implies an exponential decay towards the attractor. Given 
a non-positive Eulerian Lyapunov exponent spectrum, ordered as A, = A, 2 A, 2 
A, 2 . . . 2 A,, when all exponents are negative, it implies a fixed point attractor; when 
A, = 0 and all other exponents are negative, it corresponds to a periodic attractor, and 
A, = A, = 0 represents a quasi-periodic attractor. 

To calculate the largest Eulerian Lyapunov exponent, A,, we implemented the 
algorithm proposed by Wolf et al. (1985) for time series and we applied to Eulerian 
velocity evolutions obtained from direct numerical simulations of converging- 
diverging channel flows. We performed extensive trials with different embedding 
dimensions to find the smallest reliable embedding dimension to calculate the Eulerian 
Lyapunov exponents. The embedding dimension for all the Reynolds numbers 
reported is n = 4. All trials with higher embedding dimensions lead to the same 
qualitative behaviour, and quantitative differences are no greater than 4 YO. Figure 9 
shows the temporal convergence of A, for the Reynolds numbers range of 150-850. A 
zero value of the Eulerian Lyapunov exponent is obtained for non-chaotic self- 
sustained oscillatory flows up to Reynolds numbers of 500 (figures 9a-c). These zero 
Eulerian Lyapunov exponents indicate the exponential decay towards the attractor of 
trajectories on the phase space when small changes on the initial conditions occur. 
Positive Eulerian Lyapunov exponents, obtained for Reynolds numbers of 600, 750, 
and 850 and depicted in figures 9 (f>-9 (h), verify chaotic flow behaviours. 

Table I shows the largest Eulerian Lyapunov exponent, A,, as a function of the 
Reynolds number. The estimates of A, are given in terms of the asymptotically 
converged mean value and the standard deviation of the fluctuating values of A E ( f ) .  
The large positive Eulerian Lyapunov exponents, attained consistently for Reynolds 
numbers greater or equal than 550, indicate that the flow remains chaotic in this 
converging-diverging channel and verify the qualitative results provided by the 
autocorrelation functions and the pseudophase space representations. Numerical 
simulations of unforced two-dimensional compressible flows past airfoils predict 
increases of A, as a function of the Reynolds number after the onset of chaos (Pulliam 
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Re 
150 
250 
400 
450 
500 
550 
600 
750 
850 

A B 

0.000 1927 
0.000090 6 
0.002 3254 

-0.002 181 5 
0.001 0185 
0.2367243 
1.274962 
1.108400 
1.102538 

SD 

0.004935 
0.000076 
0.007 3 19 
0.002453 
0.003 175 
0.007 3 16 
0.034339 
0.047 150 
0.020 658 

TABLE 1. Asymptotically-converged mean value of the largest Lyapunov exponent, A,, and 
standard deviation, SD, of the fluctuating values of A,(t) for different Reynolds numbers 

& Vastano 1993) whereas numerical calculations performed for a logistic map give a 
similar, but continual, distribution of the Lyapunov exponents as a function of a 
control parameter (Ruelle 1992). 

3.5. Fractal dimensions 
Simple attractors, such as fixed points for steady flows, periodic orbits for one- 
frequency oscillatory flows and N-tori for N-frequency motions, attract asymptotically 
all trajectories sufficiently close. The primary characteristic of chaos is that the flow is 
unstable on the attractor. Consequently, infinitesimal perturbations grow at an 
exponential rate in one or more directions of the attractor. A dynamical system with 
N degrees of freedom has a strong attractor when it exhibits a chaotic evolution on the 
N-dimensional phase space. Therefore, a strange attractor is chaotic when there is at 
least one direction of exponential growth (Grassberger & Procaccia 1983 ; Brandstater 
& Swinney 1987; Vastano & Moser 1991). 

A useful parameter to characterize the geometry of a strange attractor is its fractal 
dimension. The fractal dimension measures the degrees of freedom that are relevant to 
the flow dynamics and that are necessary to capture the main flow features. The 
Hausdorff-Besikovich fractal dimension, D ,  is a purely geometric measure of the 
fractal local structure of the attractor. I t  is independent of the frequency at which a 
trajectory visits the different parts of the attractor. However, D is difficult to calculate 
and impractical for high-dimensional systems. Instead, the information dimension, d,, 
and the correlation dimension, I) ,  are more useful measures of the local structure of a 
strange attractor. These fractal dimensions are related by the inequalities v < d, < D ,  
and, in most cases, the correlation dimension v can be measured more easily than either 
d, or D. The fractal dimension can also be evaluated from the spectrum of Eulerian 
Lyapunov exponents. Larger positive Eulerian Lyapunov exponents imply that more 
directions of instabilities exist on the attractor, causing a higher fractal dimension. The 
relationship between D and A, is given by the Kaplan-Y orke conjecture (Frederickson 
et 01. 1983) which relates the Lyapunov exponent spectrum {A,} to the dimension of the 
attractor, D,,, by 

D, = m+ c ~i l l~ ,+ , l  9 i., i 
where m is the largest number for which Z z l  hi is positive. 

Experimental investigations and numerical simulations, in closed and open flow 
systems, have shown evidence that chaotic, strange attractors are low dimensional at  
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the onset of chaos or in flow regimes of weak turbulence. The dimension of the 
attractor increases gradually as the system moves towards a developed turbulence 
(Brandstater & Swinney 1987; Vastano & Moser 1991 ; Pfister et al. 1992; Pulliam & 
Vastano 1993 ; Broze & Hussain 1994). For example, the Taylor-Couette flow attractor 
is low dimensional ( n  = 2) at the onset of turbulence, and its dimension increases up 
to a value higher than 4 in turbulent flow regimes (Brandstater & Swinney 1987). 
Vastano & Moser (1991) corroborated the previous experimental results in 
Taylor-Couette flows and found that the fractal dimension increases continuously as 
the Reynolds number is increased in the turbulent regime. Pulliam & Vastano (1993) 
found that the transition to chaos in open unforced two-dimensional flows past an 
airfoil is gradual and low dimensional. This transition occurs as if it were governed by 
a one-dimensional map since the bifurcation scenario is similar to that of the logistic 
map with a period-doubling cascade and windows of periodicity embedded by chaos. 
However, the fractal dimension D, increases monotonically as the Reynolds number is 
increased beyond the onset of chaos. 

We examine temporal flow evolutions with seemingly erratic behaviour on both 
short- and long-term timescales in terms of the Hurst’s rescaled range analysis. The 
Hurst’s rescaled range analysis ( R / S )  is a statistical method for analysing a time signal 
and for estimating its fractal dimension, d. The records are characterized by the Hurst’s 
exponent, H,  and the trace of the record with a fractal dimension d = 2-H (Feder 
1988). The significance of d is that it describes the relation between the variance of the 
signal and the timescale. No assumptions are made on the underlying physics of the 
system from which the signal is observed. It is, therefore, a purely statistical tool. 
Fractal systems have neighbour-to-neighbour correlations at all scale levels. When 
neighbouring elements in a time series are positively correlated, that is 1 < D < 1.5, the 
measured variance drops less rapidly as the resolution is decreased. If a signal [( t )  is 
divided into intervals of time, Az, and the mean as well as the variance is calculated for 
each interval, then, there will be a lower variance when the interval length is increased. 
Therefore, the relationship between the variance and the sample time may fit a power 
law, and if so, the fractal dimension of the time series can be calculated by the Hurst’s 
rescaled range analysis (Schepers, van Beck & Bassingthwaighte 1992). 

For converging-diverging channel flows, we calculate the fractal dimension, d, of the 
U-velocity time series using Hurst’s empirical law and rescaled range analyses proposed 
by Hurst (1951) and described by Feder (1988). The time series contains 70001 data 
points for Re = 150 and 140001 data points for Re = 850. Figure 10 shows the log-log 
plot of R(B)/S(O) us. 8, where R(B)/S(B) is the rescaled range; 

R(8) = max{X(z, 8)) -min{X(t, O)}, 1 < t < 8, 

is the range defined as the difference between the maximum and the minimum accumu- 
lated influx X(t ,  8) = Ck=, {[(a)-(f;),} from the mean flow ( f ; ) ,  = (1/8)Cf=, [( t )  for a 
given interval of time 8; and, S(0) is that standard deviation. The rescaled range, 
R(B)/S(O), for each time interval 8 is plotted and the slope of the best fitted curve 
represents the Hurst’s exponent, H.  The plot of R(B)/S(8) us. 8 for Re = 150, shown in 
figure lO(a), depicts two distinct regions. The Hurst’s exponent in the first region is 
approximately equal to one as given by the slope of the least-squares fitted curve. 
According to d = 2 - H ,  the fractal dimension, d, is also close to one. This represents 
a high correlation or a long-term persistence in the velocity evolution and confirms the 
nature of the periodic attractor obtained for Re = 150. The second region of this graph 
(8 > 8” = 20) is not meaningful to calculate the Hurst’s exponent H for it corresponds 
to frequencies smaller than the fundamental frequency of this periodic flow regime. 
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FIGURE 10. Log-log plot of the rescaled range R(O)/S(O) rs. 0. The slope determines the Hurst's 
exponent H for the fractal dimension d = 2 - H :  (n )  Re = 150; (h )  Re = 850. 

Figure 10(b) presents a log-log plot of R(H)/S(H) cs. H for Re = 850. The slope of the 
least-squares fitted curve for the whole region gives a Hurst's exponent of H = 0.623928 
which implies that this flow velocity evolution has a lower correlation as well as less 
memory over time than the flow at Re = 150. It also indicates the long-term 
persistent, unpredictable, characteristic of this chaotic flow regime, which assures an 
unpredictable flow in the future based on the unpredictability of the flow in the present. 
The fractal dimension increases from d = 1 as the Reynolds number is increased in the 
chaotic flow regime and, for this Reynolds number of 850, the fractal dimensions is 
d =  1.376072. 

4. Lagrangian trajectories on laminar and transitional flow regimes 
In $3 we have shown the existence of chaotic flows within strange attractors which 

are originated from Eulerian velocity fields u(x,,t), where p are fixed positions on 
the converging-diverging channel. When the flow is described in a Lagrangian frame, 
we determined the fluid particle trajectories by integrating the differential equation 
dx/dt = u(x ,  t ) ,  where u(x,  t )  denotes the Eulerian velocity field obtained from direct 
numerical simulation (DNS) of the time-dependent Navier-Stokes equation solver. In 
this case, a sensitive dependence on initial conditions indicates the presence of 
Lagrangian chaos, which implies that nearby trajectories diverge exponentially fast 
(Danielson & Ottino 1990). Researchers have investigated the relation between the 
onset of Lagrangian chaos and Eulerian chaos, the value of their Lyapunov exponents, 
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FIGURE 1 1 .  Lagrangian trajectories of three fluid particles for Reynolds numbers of 125 and 400. 

and the effect that one form of chaos has on the other one (Babbiano et a/ .  1994; 
Danielson & Ottino 1990; Guzman 1995; Amon, Guzman & Morel 1996). One would 
expect that in the presence of a chaotic Eulerian velocity field, the particle motion 
would necessarily be chaotic. However, numerical studies have shown that there are 
exceptions to this seemingly general behaviour (Lorenz 1963; Crisanti et a/. 1991). 

Our results presented in previous sections demonstrate that the converging-diverging 
channel flow evolves to a regime of Eulerian chaos from a well-organized velocity field. 
The positive Eulerian Lyapunov exponents obtained for Reynolds number flows equal 
to or higher than 550 indicate chaotic flow regimes which are also visualized by the 
pseudophase space and the Poincare section representations. Our next objective is to 
characterize the laminar and transitional flow regimes from a Lagrangian view point, 
in terms of Lagrangian trajectories for single fluid particles throughout the flow 
domain and for pairs of fluid particles located in the vortical regions. 

Lagrangian trajectories of three test particles (denoted as particle 1 ,2  and 3) starting 
at different regions of the computational domain and passing through many channel 
furrows for Reynolds numbers of 125 and 400 are shown in figure 1 1. For the steady 
flow regime at Re = 125, each test particle follows the same path in each furrow of the 
channel and test particle trajectories coincide with the streamlines of the Eulerian 
velocity field. For the time-dependent flow regime at Re = 400, test particles follow 
more complex trajectories, as shown in figure 11. They are not confined to move in 
small regions and can fill the whole computational domain. For example, particle 1 
starts its motion in the middle of the channel, continues in the vortex region and, 
finally, returns to the main flow. Similarly, particle 3 starts its motion in a vortical 
region, moves to downstream furrows and convects through different vortices in a 
more complex trajectory . 

Figure 12 depicts Lagrangian trajectories of five pairs of test particles located 
initially in the vortex region for Reynolds numbers of 125 and 150. The initial and final 
positions of the test particles are denoted by the characters i and f, respectively. The 
trajectory of each test particle in the pair is composed by a sequence of points 
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FIGURE 12 Lagrangian trajectories of five pairs of test fluid particles ( a )  Re = 125; (b) Re = 150. 

representing its instantaneous position. The trajectories of two test particles in the pair 
are so close ( d / h  z 10-5-10-4) that are indistinguishable in the figure. For Re = 125, 
the test particles follow trajectories that coincide with the streamlines of the Eulerian 
steady flow regime (figure 12u). Lagrangian trajectories of test particles starting their 
motion in the vortex region remain within this region forever. A more complex pattern 
of Lagrangian trajectories is observed in figure 12(b) for Re = 150, where pairs of 
particles sometimes remain in the vortex region but without repeating the same path 
and eventually convect downstream in the channel. These trajectories are synchronized 
with the oscillating motion of the vortices owing to the periodic self-sustained flow 
regime. 

The chaotic nature of particle trajectories cannot be determined by just looking at 
the evolution patterns of particle pairs, even though complex paths could provide a 
qualitative indication of Lagrangian chaos (Ottino 1989). Chaotic trajectories can be 
quantified by the time-average divergence of trajectories of particles initially close 
which is given by the finite-time Lagrangian Lyapunov exponent (e.g. Rom-Kedar, 
Leonard & Wiggins 1990). The spatial distribution of Lagrangian Lyapunov exponents 
allows us to determine regions of chaotic particle trajectories and to measure the 
strength of Lagrangian chaos (Amon et a/. 1996). We found that the onset of 
Lagrangian chaos at 125 < Re < 150 coincides with the first Hopf bifurcation and 
complex particle trajectories induce chaotic advection and mixing enhancement, which 
is verified by positive finite-time Lagrangian Lyapunov exponents and stretching rate 
distributions. We also demonstrated the existence of Lagrangian chaos in non-chaotic 
Eulerian converging-diverging flows and the onset of Eulerian chaos coinciding with 
the spreading of a strong Lagrangian chaotic regime (Amon e f  al. 1996). 

5. Three-dimensional flow simulations 
Our previous investigations have determined that the transition route to chaos in 

converging-diverging channel flows, through the Ruelle-Takens-Newhouse (RTN) 
scenario, obeys two-dimensional flow bifurcations (Guzman & Amon 1994a). This 
scenario was assumed to occur without being affected by three-dimensional spanwise 
flow disturbances that could potentially grow as a consequence of secondary 
instabilities. Experimental results reported by Nishimura er a/. (1990), for the same 
converging-diverging channel geometry, show no evidence of flow three-dimensionality 
in the range of Reynolds number explored, which corroborates our previous 
assumption. However, stable three-dimensional states have been found in internal 
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FIGURE 13. Time evolution of: (a)  U-velocity ; (b)  W-velocity components at three characteristics 

points 4, P, and 5, for Re = 226. 

channel flows where geometric inhomogeneities or flow obstacles induce flow 
separations and inflectional velocity profiles (Amon & Patera 1989; Batcho & 
Karniadakis 1991 ; Schatz & Swinney 1992). In these flows, the primary instability 
leads to two-dimensional flow oscillations that become self-sustained, and these self- 
sustained oscillatory flows are susceptible to three-dimensional disturbances at larger 
Reynolds numbers. 

The converging-diverging channel also induces inflectional velocity profiles which 
are capable of triggering inviscid instabilities (Rayleigh 1945). Thus, our next objective 
is to determine the effect of the spanwise flow direction on the transition to chaos. We 
perform three-dimensional numerical simulations at moderate Reynolds number flow 
regimes for which DNS can resolve all temporal and spatial flow scales. Since DNS 
time-evolution calculations of three-dimensional transitional flows in complex 
geometries require massive computer memory and CPU times, we were able to 
simulate only a few typical flow regimes to date; nevertheless, these simulations enable 
us to investigate the effects of three-dimensionality in a limited range of Reynolds 
numbers. We investigate transitional flow regimes near the first and second Hopf 
bifurcations and present velocity histories, Fourier power spectra, velocity profiles, and 



-8 
5 
Y 
.3 3 

3 
d 

6 x 1 0  I (  

3 X I 0  

0 

Point 2 
(!J, 

I 
(rJ , 

-A 

0.5 1 .0 1 .5 

l " " I " " " '  ' I  I "  

Point 
- 1  1 . S X 1 0  * - 1  

- 2  - 1.5 x10-3 
-8 
"a 1.0x10-3 
E 
d 

t 
Y .3 

1 . 0 x 1 0  

5.0 x10 5 .0x10 

0 0.5 1 .0 I .5 0 0,s 1 .0 1 .5 
Frequency. (rJ Frequency, 

FIGURE 14. Fourier power spectra of the velocity components at P,. P, and k!, for Re = 226: 
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streamtracers in $5.1, and we discuss the effects of three-dimensionality and spanwise 
boundary conditions in $ 5.2. 

5.1. Three-dimensional trarisitiaiiul,po~c. churcrcterization 
In this section, we describe three-dimensional flow simulations in converging-diverging 
channels with non-slip spanwise boundary conditions at the sidewalls, in terms of 
velocity time series, Fourier power spectra, velocity profiles, and streamtracers. The 
time evolution of the streamwise (/-velocity and the spanwise W-velocity components 
are shown at three characteristic points of the computational domain. The spatial 
positions of these points are indicated in figure 1 : PI and are located close to the 
sidewalls of the channel at z / h  = -24 and z / h  = 24, respectively, and P2 is within the 
symmetry plane at z / h  = 0. 

The streamwise U-velocity is oscillatory with amplitudes depending on the spatial 
location within the channel (figure 13a). The amplitude of the velocity oscillations at 
P2 is about three orders of magnitude smaller than the amplitude at PI and P3. The 
U-velocity oscillations at Pl and e3 have exactly the same magnitude and direction, which 
corresponds to a synchronized motion with a zero phase angle due to the symmetry of 
the channel with respect to both the crosswise y-direction and the spanwise z-direction. 
However, even though the W-velocity oscillations at Pl and P3 have the same 
magnitude, they have opposite directions (figure 13 h).  This means that fluid particles 
located symmetrically with respect to z / h  = 0 oscillate with equal frequencies and 
move either to or from the sidewalls of the channel. Furthermore, the amplitude of 
these flow oscillations decreases towards the centre plane and becomes zero at Pi as a 
consequence of the asymmetric fluid motion along the spanwise z-direction. 

The Fourier power spectra of the velocity time evolutions, shown in figures 14(~ r )  
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FIGURE 15. U-velocity profiles a t  x/h = 0 and x / h  = 4.67: (a) isometric view; (b)  z-axis view; 
(c) y-axis view. 

and 14(6), display two fundamental frequencies, w1 and w2, along with their linear 
combinations. These fundamental frequencies and the pattern of their linear 
combinations are the same as those obtained in the two-dimensional simulations 
corresponding to a quasi-periodic flow regime. 

Figure 15 (a) shows an isometric projection of U-velocity profiles at planes 
perpendicular to the streamwise x-direction of the channel. The z-axis view of these 
velocity profiles, shown in figure 15 (b), depicts a nearly parabolic velocity profile at 
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FIGURE 16. Streamtracers of ff rrid particles located initially at: (u) z-planes near the sidewalls; 
(b)  middle z-lane. 

x/h = 0 and an inflectional velocity profile at x/h = 4.67 along with recirculation flow 
regions at the upper and lower furrows of the channel. The y-axis view, shown in figure 
I5(c), portrays boundary layers at the sidewalls and uniform ti-velocity profiles along 
the spanwise direction outside the boundary-layer regions. 

Streamtracers of fluid particles initially located at different z-planes are shown in 
figure 16. Fluid particles in the bulk flow convect downstream whereas fluid particles 
in vortical regions near the sidewalls move towards the centre of the channel until they 
become entrapped into recirculation zones on z-planes between the initial location and 



50 A. M .  Guzrnun and C. H .  Arnon 

the central plane, as shown in figure 16(a). However, streamtracers of fluid particles 
located at the middle z-plane remain on this plane (figure 16b). Furthermore, their flow 
patterns consist of recirculation regions which are similar to those obtained from the 
two-dimensional simulations. 

The numerical results of three-dimensional converging-diverging channel flows 
indicate the presence of stable ordered three-dimensional self-sustained oscillatory 
flows and the onset of spanwise standing waves at Re < 220. The velocity time series 
have demonstrated the existence of a quasi-periodic flow regime with two fundamental 
frequencies for a Reynolds number of 226. Fourier power spectra calculated in 
different flow regions indicate that all velocity components display the same 
fundamental frequencies. To reach this quasi-periodic self-sustained oscillatory state, 
the flow has undergone two supercritical bifurcations. Our previous two-dimensional 
simulations have also predicted a quasi-periodic regime at this Reynolds number and 
two supercritical Hopf bifurcations - the first Hopf bifurcation at 130 < Re < 150 and 
the second at 150 < Re < 200 (Guzman & Amon 1994~).  The primary instability leads 
to a periodic flow whereas the secondary instability leads to a stable three-dimensional 
quasi-periodic flow regime with streamwise travelling waves and spanwise standing 
waves. Thus, the three-dimensional results verify that the converging-diverging open 
channel flow exhibit a sequence of bifurcations leading to periodic and quasi-periodic 
flow regimes. Moreover, the spanwise standing waves originating from the secondary 
instability does not change the early stages of the transition scenario from a steady 
regime to a quasi-periodic flow by two successive Hopf bifurcations up to Reynolds- 
number flows of 226. 

Time series, velocity profiles, and streamtracer representations from three- 
dimensional simulations have shown that the flow characteristics in the symmetry 
plane are similar to those obtained with two-dimensional flow assumption simulations. 
The amplitude of the oscillatory velocity depends on the position of the z-plane with 
respect to the channel sidewalls. Large oscillatory amplitudes are observed at locations 
near the sidewalls and small amplitudes at points located near the middle plane of 
symmetry. The effects of the spanwise channel walls, the boundary-layer detachment, 
and the spanwise standing waves are localized near the sidewalls not affecting the 
quasi-periodic flow regime and the transition route to chaos for the three-dimensional 
flows investigated. The possibility of secondary instabilities, induced by three- 
dimensional perturbations at higher Reynolds numbers, remains to be investigated and 
is currently underway. 

6. Discussion of dynamical flow characterization and future work 
Direct numerical simulations of the governing flow equations enable the char- 

acterization of converging-diverging channel flows in terms of classical fluid dynamics 
representations such as instantaneous velocity profiles, velocity time evolutions, 
streamline fields, and vortical structures. The investigation based on classical fluid 
dynamics representations has revealed the possibility of triggering self-sustained 
oscillatory flows in converging-diverging channels and has identified the range of 
Reynolds numbers for periodic, quasi-periodic and chaotic flow regimes. In addition, 
we have recognized the source of the instability that induces and sustains these 
oscillatory flows as being Tollmien-Schlichting instabilities. Furthermore, the classical 
fluid dynamics characterization demonstrates that the route of transition to turbulence 
in converging-diverging channel flows occurs by successive supercritical Hopf 
bifurcations, following a scenario similar to that described by the Ruelle- 
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Takens-Newhouse theory for onset of chaos. To characterize and quantify weak 
turbulent and chaotic flow behaviours, we resort to the calculation of dynamical 
system flow parameters using techniques derived from nonlinear analysis of discrete 
mechanical systems, such as autocorrelation functions, pseudophase space repre- 
sentations, Eulerian Lyapunov exponents and fractal dimensions. 

The dynarnical flow characterization of transitional and chaotic regimes enables us 
to determine the predictability of transitional flows, to characterize chaotic and weak 
turbulent flows, and to identify flow regions and flow regimes where chaos can be 
exploited with the objective of improving flow mixing and enhancing heat transfer at  
a minimum penalty associated with the increase in pumping power. Autocorrelation 
functions, pseudophase spaces, and Poincare section representations provide quali- 
tative indications of the unpredictable nature of chaotic flow regimes, of the onset of 
chaos, and of the topologic structure of the attractors for different flow regimes, 
whereas Eulerian Lyapunov exponents and fractal dimensions are quantitative tools to 
establish the onset of chaos, the persistence of chaotic flow regimes, and the long-term 
persistent unpredictable nature of chaotic flow regimes. In addition, the dynamical 
flow characterization confirms the evolutive flow pattern and the sequence of 
bifurcations in the transition to chaos found in converging-diverging channel flows by 
means of classical fluid dynamics representations. 

The predictability of flow regimes is determined by analysing the autocorrelation 
functions and by representing different attractors in the reconstructed pseudophase 
spaces. The autocorrelation function results indicate that predictable flow regimes are 
attained for relatively low supercritical, self-sustained oscillatory flows (e.g. Re = 150, 
400), and unpredictable, aperiodic flow regimes are obtained for higher Reynolds 
numbers (e.g. Re = 850) beyond the onset of chaos. The transitional flow behaviour is 
analysed by the geometric visualization of the evolution of the attractors until the 
appearance of a strange attractor. The pseudophase space and Poincare section 
representations of the reconstructed attractors reveal that the periodic flow attractor 
evolves to a well-defined, T 2  torus, quasi-periodic attractor and, then, to a periodic 
attractor corresponding to a frequency-locking flow regime as the Reynolds number is 
increased from 150 to 400. In this Reynolds number range, the well-organized structure 
of the flow trajectories confirms the predictability of these flow regimes. The evolution 
to a strange attractor for higher Reynolds numbers (e.g. Re = 750) from previous 
quasi-periodic attractors establishes the unpredictable nature of the aperiodic orbits as 
well as the emergence of a chaotic flow via sequence of successive supercritical 
bifurcations as described in $3.4. 

We have first found the frequency-locking phenomenon using classical fluid 
dynamics representations and, then, verified through dynamical system techniques. 
This frequency-locking flow regime appears as a consequence of the locking of two 
fundamental frequencies corresponding to a preceding quasi-periodic regime and 
evolves to a 7‘” torus as the Reynolds number is increased. The asymptotic plateau 
reached by the ratio of the fundamental frequencies o ) l / ( r ~ z ,  shown in figure 5, further 
confirms the frequency-locking phenomenon. This asymptotic plateau can also be 
interpreted in the context of structural stability of the frequency-locking phenomenon 
(Berge et a/ .  1986). To analyse the structural stability, the ratio of the fundamental 
frequencies q / m 2 ,  known also as the winding number p, is represented as a continuous 
function of the Reynolds number which is the control parameter. For rational values 
of p = ~ , I J ( o ~ ,  there exists open intervals of the control parameter in which p remains 
constant. The extremes of these intervals correspond to a marginal situation where an 
infinitesimal change in the Reynolds number leads to a change in the winding number. 
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Therefore, the representation of p as a continuous function of the control parameter 
depicts horizontal steps when p passes through a rational value and zones where p takes 
continuously changing irrational values. 

The pseudophase space representations of different flow regimes portray a dense 
space of trajectories on the surface of a T 2  torus for the quasi-periodic flow regime 
(Re = 250) which evolves to a periodic trajectory over another T 2  torus (Re = 400) 
depicting clearly the frequency-locking phenomenon. The periodic nature of the 
frequency-locking flow regime is verified by the autocorrelation function, the 
pseudophase space, and the Poincare section representation. The evaluation of the 
Eulerian Lyapunov exponent for this frequency-locking flow regime also verifies its 
periodic and predictable nature. Moreover, calculations of the largest Eulerian 
Lyapunov exponent, A,, for slightly higher Reynolds numbers, yield nearly vanishing 
exponents as shown in table 1. This indicates that the converging-diverging channel 
flow evolves from the frequency-locking flow regime to a quasi-periodic well-organized 
flow with three fundamental frequencies before exhibiting any traces representative of 
chaotic flow behaviour (Guzmin & Amon 1994 a). Frequency-locking flow regimes 
have also been obtained in other flow systems such as in oscillatory flows around a 
circular cylinder (Vittori & Blondeaux 1993); however, these flows exhibit a sudden 
transition from a phase-locking regime to a chaotic flow for further increases in the 
control parameter (Gollub & Benson 1980; Vittori & Blondeaux 1993), whereas 
converging-diverging channel flows exhibit multi-frequency quasi-periodic regimes 
before reaching a chaotic flow regime. 

We have found that the converging-diverging channel flow can be represented in 
low-dimensional phase spaces for Reynolds numbers up to 850. This assertion of low- 
dimensional laminar, transitional and weak turbulent converging-diverging flows is 
confirmed by both the pseudophase space representations of the reconstructed 
attractors and the calculations of the Eulerian Lyapunov exponents. An embedding 
dimension of n = 4 is sufficient to represent the different flow attractors in the 
pseudophase space since it yields very good agreement with the results previously 
obtained from classical fluid dynamics characterization such as velocity time series, 
Fourier power spectra and phase-space portraits. Further indication of the low 
dimensionality of flow regimes at the onset of chaos is provided by the values of the 
largest Eulerian Lyapunov exponent, A,. The algorithm for calculating A, is sensitive 
to the embedding dimension n and, after extensive trials, we ascertain that variations 
no greater than 4 %  are obtained in the value of A, by increasing discretely the 
embedding dimension from n = 3 to n = 7 for a wide range of time delays 7 (Guzman 
1995). 

The gradual transition to chaos through a sequence of bifurcations is also confirmed 
by the evolution of the largest Eulerian Lyapunov exponent, A,, as a function of the 
Reynolds number. Vanishing Eulerian Lyapunov exponents correspond to periodic 
and quasi-periodic flow regimes, whereas, Eulerian Lyapunov exponents greater than 
zero indicate chaotic flow regimes. The positive value of the largest, long-time average 
Eulerian Lyapunov exponent, A,, indicates the existence of chaotic flow regimes for 
Re 3 550. The second largest Eulerian Lyapunov exponent, A,, could provide 
additional information on other directions of exponential growth in the phase space. 
However, the estimation of A, becomes too resource intensive and computationally 
expensive because of the increasing amounts of data required to perform the 
calculations. Nevertheless, we believe that A,, reported in this paper with an 
embedding dimension of four, gives reliable information about the dynamical flow 
characterization in the range of Reynolds numbers explored, for only minimal 
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variations in the value of A,  are obtained using higher embedding dimensions. This 
implies that the flow dynamics in these regimes is captured appropriately by assuming 
a low-dimensional representation. Consequently, only a small number of degrees of 
freedom is relevant to investigate the flow dynamics for the onset of chaos and weak 
turbulent flows in converging-diverging channels. 

Low-dimensional, weak turbulence has also been obtained in other flow systems 
such as in Taylor-Couette flows (Brandstater & Swinney 1987; Vastano & Moser 
1991), unforced two-dimensional flows past an airfoil (Pulliam & Vastano 1993), and 
forced axisymmetric subsonic jets (Broze & Hussain 1994). We have assumed that 
converging-diverging flow regimes at the onset of chaos can be represented as low- 
dimensional systems, and the results of the dynamical flow characterization 
corroborate this assumption when they are compared with the direct numerical 
simulations. 

High-dimensional chaos has been observed experimentally in flows at relatively large 
Reynolds numbers, and we expect to appear in numerical simulations of con- 
verging-diverging channel flows at higher Reynolds numbers. However, the require- 
ment of data to determine the appropriate dimension of such a system increases 
dramatically. Consequently, we need to develop a more efficient approach to 
investigate and achieve a thorough understanding of those complex flow regimes which 
are required to be represented as high-dimensional dynamical systems. High- 
dimensional flow behaviours, associated with strong chaotic flow regimes, can be also 
determined by evaluating the fractal dimension D, given by the Kaplan-Yorke 
conjecture (Frederickson et al. 1983; Pulliam & Vastano 1993). The evaluation of D, 
requires the consideration of other possible directions of exponential growth and the 
calculation of additional Eulerian Lyapunov exponents. Consequently, the dynamical 
flow characterization of high-dimensional regimes becomes much more expensive 
computationally and, in most cases, the computer capability required for DNS that 
resolves all spatial and temporal scales of motion is beyond the computer power 
currently available. 

The importance of demonstrating, characterizing and quantifying the chaotic and 
fractal flow behaviours stems from our interest in triggering chaotic flow regimes that 
induce flow mixing and heat transfer enhancement with small penalty on the power 
dissipation increase (Amon & Mikic 1990). With this motivation, the dimension of the 
strange attractor is a good measure of how well the chaotic orbits fill the phase space 
and, therefore, is a measure of the chaotic mixing strength. For example, in a two- 
dimensional representation of the attractor in an adequate phase space, a fractal 
dimension close to two indicates that many stretchings and foldings of fluid elements 
have occurred, which is indicative of chaos (Ottino et al. 1992). It is in this spirit that 
we attempt to examine velocity time series using approaches developed originally for 
nonlinear dynamical system analysis and to link parameters such as fractal dimension 
and Eulerian Lyapunov exponents with classical flow dynamics characteristics, 
obtained from DNS of transitional and turbulent flows. 

Even though the fractal dimension, d, reported in this paper with statistical approach 
calculations, is not a direct representation of the attractor’s fractal geometry, this 
parameter does give useful information about the future tendency of the velocity 
evolution and, consequently, about the predictability of flow regimes. An alternative 
approach we are pursuing is to determine the fractal geometric nature of different 
attractors by constructing a Poincare section in an appropriate phase space and, then, 
computing geometrically the fractal dimension of this section in the phase-space 
regions. This information may prove useful in evaluating the strength of the attractor 
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and its relationship to chaotic flow mixing enhancement in forced convective 
flows in converging-diverging channels. 

7. Conclusions 
Direct numerical simulations of incompressible, two-dimensional flows in con- 

verging-diverging channels reveal the possibility of inducing self-sustained oscillatory 
flows by triggering and sustaining Tollmien-Schlichting instabilities. This self-sustained 
oscillatory flow experiences three successive supercritical Hopf bifurcations as the 
Reynolds number is increased beyond the first flow bifurcation at 130 < Re, < 135. 
Each bifurcation adds an additional frequency while the flow evolves from a laminar 
to a chaotic flow regime. During this sequence of bifurcations, classical fluid dynamics 
representations demonstrate the transitional flow evolution from a time-periodic state 
to a non-periodic broadband flow regime passing through stable non-turbulent regimes 
of periodicity with one fundamental frequency, quasi-periodicity with two in- 
commensurate fundamental frequencies, frequency-locking periodicity, and quasi- 
periodicity with three fundamental frequencies and their linear combinations. 

Three-dimensional simulations indicate the presence of stable three-dimensional 
oscillatory flows. The converging-diverging channel flow reaches a quasi-periodic self- 
sustained oscillatory state at Re = 226, after two supercritical Hopf bifurcations. The 
primary instability leads to a periodic flow whereas the secondary instability leads to 
a stable three-dimensional quasi-periodic flow regime with streamwise travelling waves 
and spanwise standing waves. Furthermore, the spanwise standing waves originating 
from the secondary instability have no influence on the early stages of transition to 
quasi-periodic flows in the range of Reynolds numbers investigated. 

The dynamical flow characterization of the reconstructed attractors in three- 
dimensional pseudophase spaces confirms the evolution from a periodic flow attractor 
to a well-defined T 2  torus quasi-periodic attractor, to a periodic frequency-locking 
flow attractor, and to a T 3  torus which breaks up into a chaotic strange attractor as 
the Reynolds number is increased from 150 to 500. The gradual evolution to a strange 
attractor from previous quasi-periodic regimes establishes the emergence of a chaotic 
flow behaviour via successive flow bifurcations. 

The dynamical characterization of the transitional flow regimes ascertains the 
Reynolds number range for the onset of chaos. The value of the largest Eulerian 
Lyapunov exponent verifies that the flow changes its behaviour from a quasi-periodic 
predictable regime to an aperiodic, chaotic, unpredictable regime in the Reynolds 
number range between 500 and 550. For predictable flows in the periodic, quasi- 
periodic and frequency-locking regimes, the Eulerian Lyapunov exponents are zero, 
indicating the insensitivity to initial conditions and the exponential decay towards the 
attractor. For higher Reynolds number flows in the range 550 6 Re 6 850, the flow 
remains chaotic, weak turbulent, and low dimensional as verified by the embedding 
dimension and the almost-constant value of the Eulerian Lyapunov exponents. 

The predictable nature of laminar and transitional flow regimes and the 
unpredictable character of aperiodic flow regimes for Re > 550 is further verified by 
the autocorrelation functions, the pseudophase space representations, and the fractal 
dimension calculations. The chaotic flow behaviour for Re = 850 is corroborated by 
the broadband frequency spectrum, by the strange attractor in the pseudophase space, 
by the asymptotic behaviour to zero of the autocorrelation function, by the positive 
Eulerian Lyapunov exponent of 1.102538, and by the fractal dimension of 1.376072 
indicating the long-term persistent unpredictable nature of this chaotic flow regime. 
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